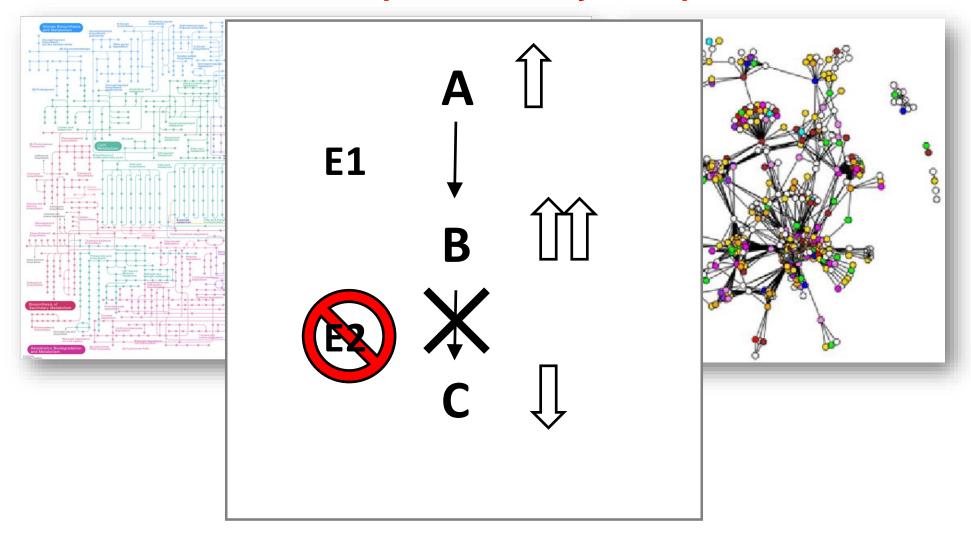
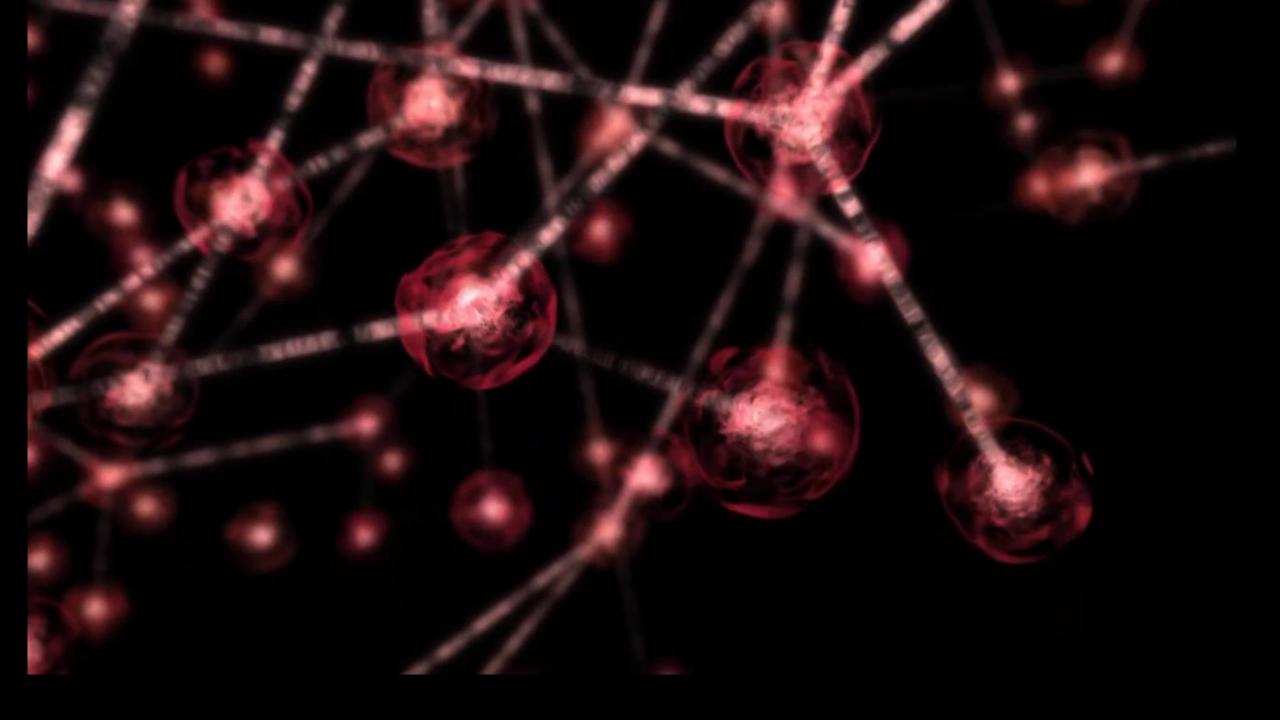

Bases biochimiques des maladies héréditaires du métabolisme

Pr. Soumeya BEKRI

Laboratoire de Biochimie Métabolique - CHU de Rouen




2

Métabolisme: Réseau Dynamique

Linéaire et statique

Dynamique et sans échelle

Métabolisme : Réseau Dynamique

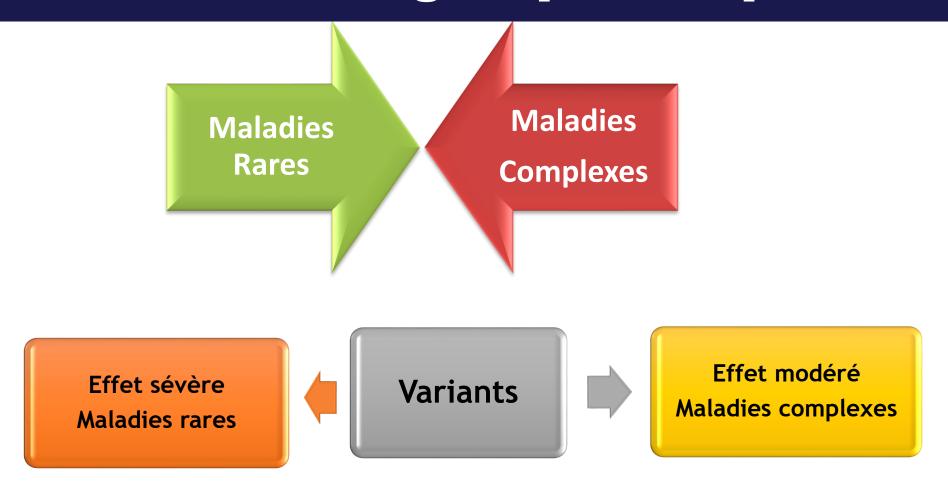
Reconstruction 3D du réseau métabolique (protéines, métabolites)

3 288 gènes(17% des gènes 13 543 réactions metaboliques impliquant 4 140 métabolites 12 890 proteins


Intégration des

Associations pharmacogénomiques Données phénotypiques à grande échelle Informations structurelles dees protéines et des métabolites. Analyses fonctionnelles

Identification de modules impliqués dans différentes pathologies


Métabolisme : Réseau Dynamique

A Database of Databases

https://precisionmedicine.ucsf.edu/building-ultimate-nexus-knowledge-biomedical-data

Maladies Monogénique/Complexes

110 million de patients: genome-wide association study → Variants identifiés dans les maladies complexes sont majoritairement dans les gènes des maladies mendéliennes.

Blair, Cell 2013

Dogme " un gène, une enzyme, une fonction catalytique " simpliste

Les gènes codent souvent plusieurs protéines différentes

→ épissage alternatif + Modification co et post-traductionnelles

Localisation subcellulaire

Régulation

Fonction

Exemple beta galactosidase/EBP

Enzymes multifonctionnelles

1 ou plusieurs sites catalytiques \rightarrow plusieurs activités catalytiques.

Fatty acid synthase 7 activités catalytiques différentes

Catalyse la synthèse d'u précurseur (acétyl-CoA, malonyl-CoA, NADPH)

Ce précurseur est fixé de façon covalente à l'enzyme

Catalyse l'élongation

Plusieurs rôles

Parfois activités complémentaires

Parfois même voie métabolique mais des réactions non consécutives

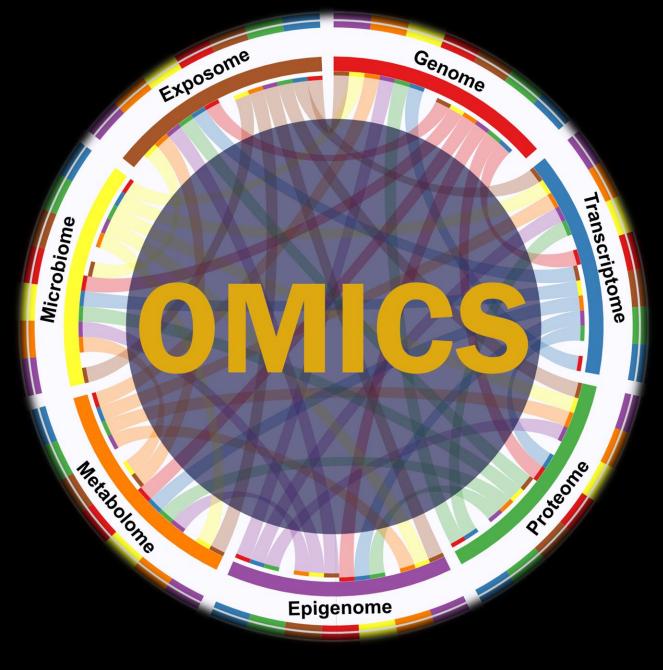
Parfois rôles de régulation

Enzymes multispécifiques

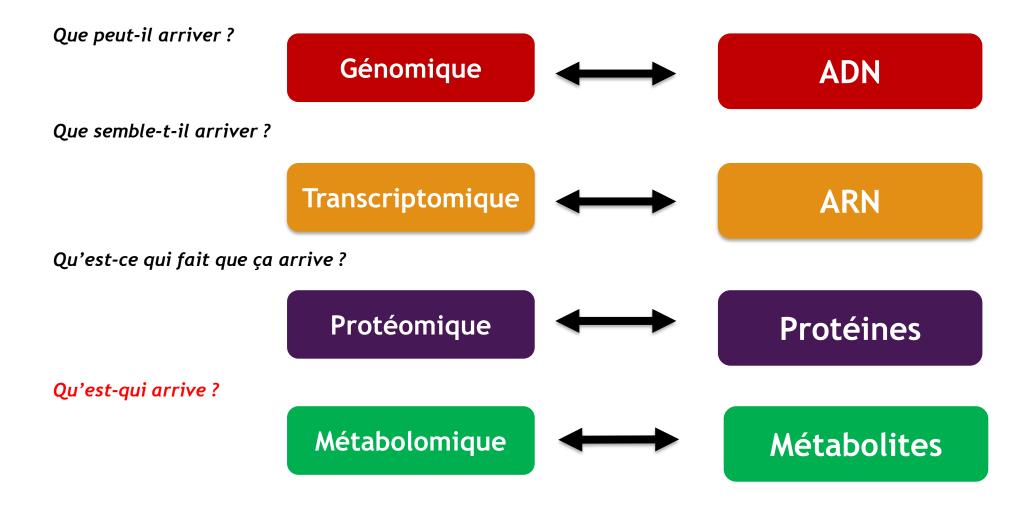
un seul type de site catalytique - différents substrats physiologiques

Hydrolases

Enzymes du catabolisme des xénobiotiques (Cyt P450)


Glycosyltransférases

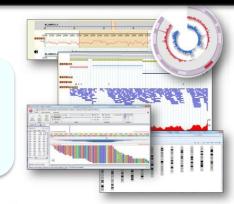
Enzymes avec des fonctions non catalytiques


Phosphoglucose isomérase + Facteur neurotrophique

→ le déficit de ces fonctions peut participer au phénotype.

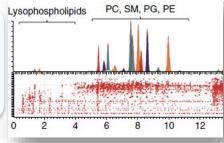
Exploration biologique des maladies héréditaires du métabolisme

Maladies Lysosomales de Surchage

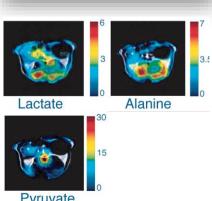


Sciences Omiques

Les technologies omiques permettent d'explorer les molécules de base qui constituent un système biologique


Séquençage Nouvelle Génération

- ADN-ARN
- Séquençage
- Stratification des patients


Spectrométrie de Masse

- Protéines, métabolites
- Caractérisation fonctionnelle
- Distribution spatiale
- Stratification des patients

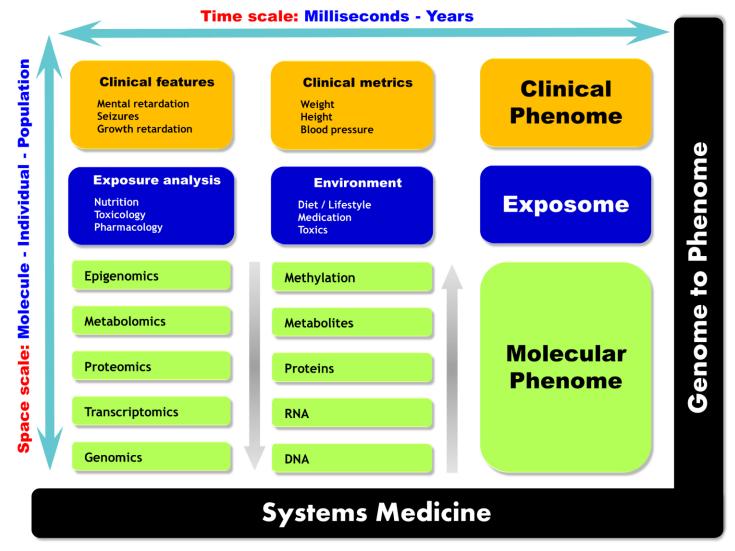
RMN

- Protéines, métabolites
- Abondance des molécules
- Interactions dynamiques
- Distribution spatiale
- Stratification des patients

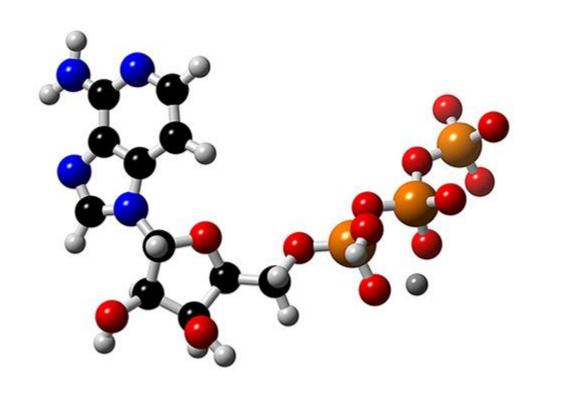
Analyses de nouvelle génération

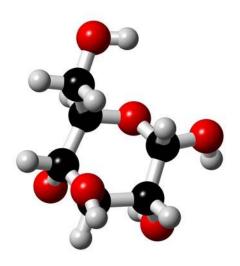
Analyses multiplex en haut débit

Données massives


Analyse de données et modélisation

Intégration des données / Systèmes experts


Signatures moléculaires



Du Génome au Phénome

Tebani, A. et al. Int. J. Mol. Sci. 2016

Métabolites

Metabolites:

Small molecules (<1500 Da)
Ultimate support of the biological information

Metabolome:

refers to the complete set of metabolites in a biological sample

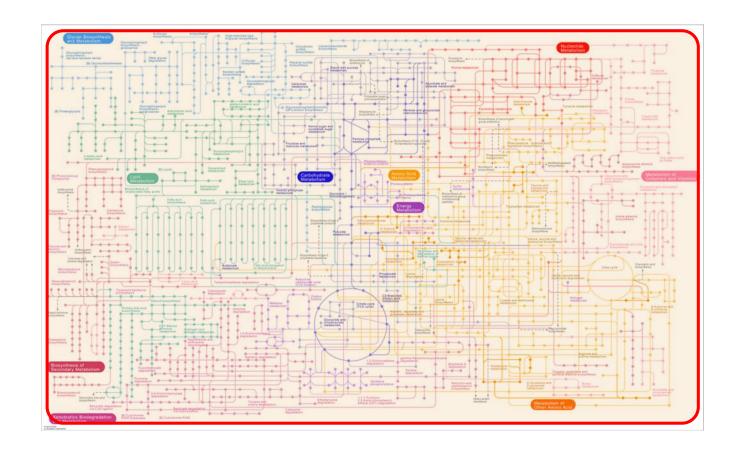
MetaboLomics / MetaboNomics:

→ Metabolic Profiling / Metabotyping

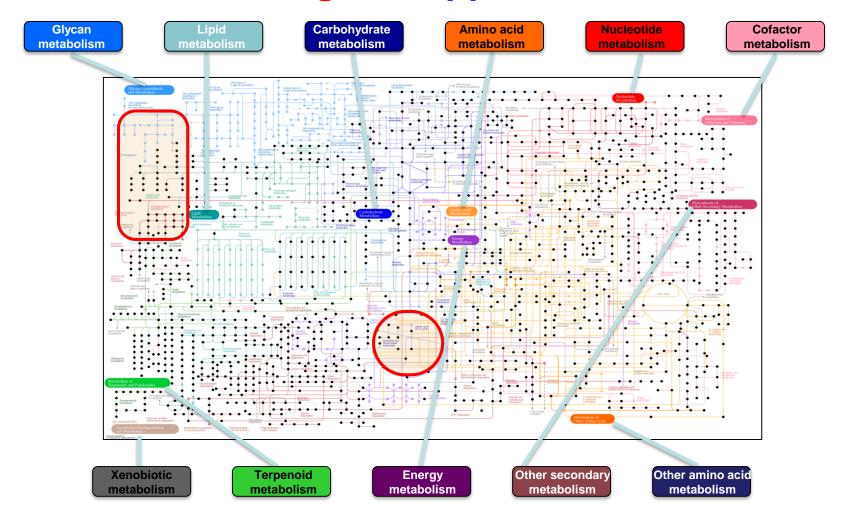
"the quantitative measurement of the metabolic *responses* of *complex systems* to a pathophysiological *stimulus* or genetic modification".

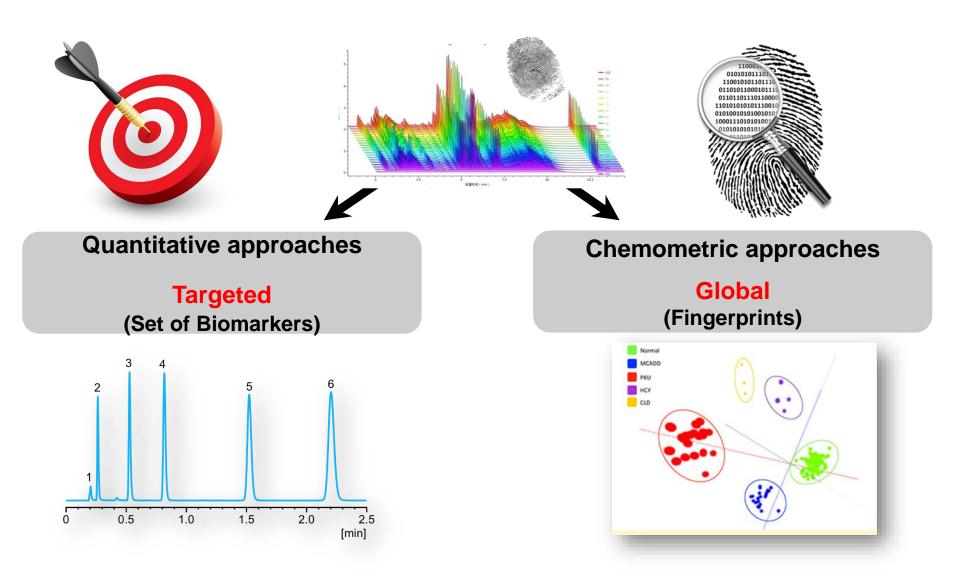
(Nicholson, J. K., et al 1999, Xenobiotica, 29, 1181-89.)

Small molecules matter


>90% of common clinical tests measure small molecules

90% of all drugs are small molecules


80% of the most common diseases involve small molecules


Goldsmith, P., et al., J Surg Res, 2010. 160(1), 122-32

Global approach

Targeted approach

Analytical Strategies

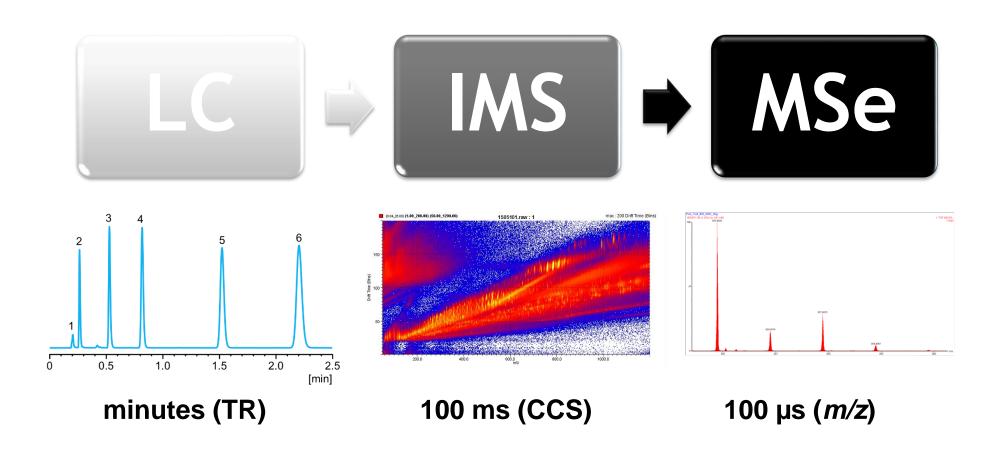
Mass spectrometry

Tissues, biofluids and extracts

Mass to charge ratio (m/z)

Sensitivity
Higher metabolome coverage

NMR spectroscopy


Tissues, biofluids and extracts

Interaction of spin active nuclei (1H, 13C, 31P) with electromagnetic fields gives molecular information

Non-destructive
Cross-instrument robustness

Analytical Strategies

Multidimensional analytical method

Metabolomics & Biomarkers

Biomarkers are critical

Presymptomatic Follow-up

Two ways for the identification of biomarkers

Metabolic Data mining: metabolomics analyses of control vs disease samples

In-silico approach

Alteration of specific metabolic pathway, which in turn affects one or more metabolic fluxes

Pagliarini & Di Bernardo Journal of computational Biology 2013

Haut débit, sensibilité, spécificité, Faible volume d'échantillon Identification et quantification

Matrices : sérum, plasma, urines, LCR, DBS

Lyse des GAG → Disaccharides

Digestion enzymatique

Lyse chimique (Méthanolyse Butanolyse)

> Mol Genet Metab. 2023 Sep-Oct;140(1-2):107632. doi: 10.1016/j.ymgme.2023.107632. Epub 2023 Jun 24.

Endogenous, non-reducing end glycosaminoglycan biomarkers are superior to internal disaccharide glycosaminoglycan biomarkers for newborn screening of mucopolysaccharidoses and GM1 gangliosidosis

```
Zackary M Herbst <sup>1</sup>, Xinying Hong <sup>2</sup>, Leslie Urdaneta <sup>3</sup>, Terri Klein <sup>4</sup>, Christine Waggoner <sup>5</sup>, Hsuan-Chieh Liao <sup>6</sup>, Francyne Kubaski <sup>7</sup>, Roberto Giugliani <sup>8</sup>, Maria Fuller <sup>9</sup>, Michael H Gelb <sup>10</sup>
Affiliations + expand
PMID: 37407323 PMCID: PMC10748792 DOI: 10.1016/j.ymgme.2023.107632
```

Table 1 Oligosaccharides in control and MPS urine

	Control	MPS I	MPS II	MPS IIIA	MPS IIIB	MPS IIIC	MPS IIID	MPS IVA	MPS IVB	MPS VI	MPS VII
n	630	19	13	16	12	3	1	13	2	12	2
HNAc (1S)	10 (0.2-49)	12 (4–36)	12 (8–28)	14 (9–27)	11 (5—16)	15 (12–29)	123	81 (39–261)	7 (5–9)	180 (71– 1234)	3 (2.5–3.5)
HNAc (2S)	0.6 (0.02–2.3)	0.8 (0.3–1.9)	0.7 (0.3–1.7)	0.8 (0.5–1.3)	0.8 (0.4–1.0)	0.8 (0.5–1.9)	1.0	0.8 (0.4–1.8)	0.4 (0.3–0.6)	13 (7.3–107)	0.6 (0.4–0.8)
HNAc-UA (1S)	n.d. (n.d 0.12)	n.d. (n.d 0.06)	n.d. (n.d 0.07)	0.03 (n.d 0.07)	n.d.(n.d0.08)	n.d.(n.d0.04)	0.04	0.56 (0.24– 5.55)	n.d. (N/A)	1.45 (0.35–7.35)	0.06 (0.06–0.07)
UA-HNAc (1S) early RT	n.d. (n.d 0.04)	1.5 (0.4–2.9)	n.d.(N/A)	n.d. (n.d 0.06)	n.d. (N/A)	n.d. (n.d 0.01)	n.d.	n.d. (N/A)	n.d. (N/A)	n.d. (n.d 0.08)	n.d. (N/A)
UA-HNAc (1S) late RT	n.d. (n.d 0.04)	0.16 (0.03–0.48)	0.19 (0.13– 0.31)	n.d. (n.d 0.05)	n.d. (N/A)	n.d. (N/A)	0.02	n.d. (N/A)	n.d. (N/A)	n.d. (n.d 0.02)	n.d. (N/A)
HN-UA (1S)	n.d. (n.d 0.04)	0.01 (n.d0.3)	0.02 (n.d0.1)	1.1 (0.1–2.0)	n.d. (n.d 0.02)	n.d. (n.d 0.05)	0.1	n.d. (n.d 0.01)	n.d. (N/A)	n.d. (n.d 0.01)	n.d. (N/A)
UA-HN-UA (1S)	n.d. (n.d 0.03)	0.04 (n.d 0.25)	n.d. (N/A)	n.d. (N/A)	n.d. (N/A)	n.d. (N/A)	n.d.	n.d. (N/A)	n.d. (N/A)	n.d. (N/A)	0.10 (0.08– 0.11)
(HNAc-UA) ₂ (1S)	n.d. (n.d 0.01)	n.d. (n.d 0.02)	n.d. (N/A)	n.d. (N/A)	0.27 (0.16– 0.58)	n.d. (N/A)	0.04	n.d. (n.d 0.04)	n.d. (N/A)	0.01 (n.d 0.29)	n.d. (N/A)
(HNAc-UA) ₂ (2S)	n.d. (n.d 0.7)	0.1 (n.d0.7)	0.1 (n.d0.2)	n.d. (n.d 0.2)	0.1 (n.d0.4)	0.1 (n.d0.3)	3.0	n.d. (n.d0.9)	0.2 (0.1–0.2)	0.9 (0.4–2.4)	n.d. (N/A)
(Hex-HNAc) ₂ (2S)	n.d. (n.d 0.03)	n.d. (n.d 0.01)	n.d. (n.d 0.01)	n.d. (N/A)	n.d. (N/A)	n.d. (N/A)	n.d.	n.d. (N/A)	0.23 (0.03– 0.43)	n.d. (n.d 0.04)	n.d. (N/A)
(HN-UA)2-HNAc (S)	n.d. (n.d 0.02)	n.d. (n.d 0.02)	n.d. (N/A)	0.01 (n.d 0.02)	n.d. (N/A)	0.20 (0.19– 0.33)	n.d.	n.d. (n.d 0.01)	n.d. (N/A)	n.d. (N/A)	n.d. (N/A)

Values are the median concentration (mmol/mol creatinine) for each group with the range shown in parentheses. Bold results depict the signature oligosaccharide MPS, mucopolysaccharidosis; n.d., below the limit of quantification

Saville JT, 2019

Marker Names, Retention Times, MRMs, and Tuning Information for AB Sciex 6500

Marker	Disease	Retention Time (RT)	MRM	DP	EP	CE	CXP
UA-GalNAc-4S	Internal Standard	3.6 min	788.1 > 534.1	-70	-10	-35	-25
UA-HNAc (1S) (early RT)	MPS-I	3.6 min	806.3 > 294.9	-84	-10	-45	-25
UA-HNAc (1S) (late RT)	MPS-II	4.1 min	806.3 > 294.9	-84	-10	-4 5	-25
UA-HNAc-UA (1S)	MPS-II	4.2 min	982.3 > 330.9	-87	-10	-41	-27
HN-UA (1S)	MPS- IIIA	4.3 min	764.2 > 331.1	-80	-10	-4 5	-25
(HNAc-UA)2(1S)	MPS-IIIB	3.9 min	1185.2 > 931.4	-80	-10	-45	-25
(HN-UA)2-HNAc (1S)	MPS-IIIC	3.6 min	691.8 > 605.0	-40	-10	-24	-25
HNAc (1S), "GlcNAc(6S)"	MPS- IID	4.0 min	630.4 > 256.1	-80	-10	-45	-25
HNAc (1S), "GalNAc(6S)"	MPS- IVA	4.4 min	630.4 > 256.1	-80	-10	-45	-25
(Hex-HNAc)2 (2S)	MPS-IVB	3.1 min	1240.0 > 256.1	-87	-10	-41	-25
HNAc (1S), "GalNAc(4S)"	MPS-VI	4.5 min	630.4 > 256.1	-80	-10	-45	-25
UA-HN-UA (1S)	MPS-VII	4.1 min	940.0 > 331.1	-80	-10	-44	-25

Herbst ZM, 2023

Oligosaccharides LC-MS/MS

Clin Chem. 2013 Sep;59(9):1357-68. doi: 10.1373/clinchem.2012.201053. Epub 2013 May 15.

Oligosaccharide analysis in urine by maldi-tof mass spectrometry for the diagnosis of lysosomal storage diseases.

Xia B¹, Asif G, Arthur L, Pervaiz MA, Li X, Liu R, Cummings RD, He M.

Rapid Commun Mass Spectrom. 2017 Jun 15;31(11):951-963. doi: 10.1002/rcm.7860.

Development of a new tandem mass spectrometry method for urine and amniotic fluid screening of oligosaccharidoses.

Piraud M¹, Pettazzoni M¹, Menegaut L^{1,2}, Caillaud C³, Nadjar Y⁴, Vianey-Saban C^{1,5}, Froissart R^{1,6}.

Lysosphingolipides LC-MS/MS

> J Clin Lab Anal. 2025 Jan;39(1):e25131. doi: 10.1002/jcla.25131. Epub 2024 Dec 27.

Lysosphingolipid Quantitation in Plasma and Dried-Blood Spots Using Targeted High-Resolution Mass Spectrometry

```
Franklin Ducatez <sup>1</sup> <sup>2</sup>, Wladimir Mauhin <sup>3</sup>, Jules Ottaviani <sup>1</sup>, Thomas Plichet <sup>1</sup>, Carine Pilon <sup>1</sup>, Olivier Lidove <sup>3</sup>, Fréderic Barbey <sup>4</sup>, Régine Perrichot <sup>5</sup>, Sabrina Vergnaud <sup>6</sup>, Marc G Berger <sup>7</sup> <sup>8</sup>, Juliette Berger <sup>7</sup> <sup>8</sup>, Nadia Belmatoug <sup>9</sup>, Yann Nadjar <sup>10</sup>, Foudil Lamari <sup>11</sup>, Esther Noel <sup>12</sup>, Stéphane Marret <sup>2</sup>, Soumeya Bekri <sup>1</sup>, Abdellah Tebani <sup>1</sup>
```

Affiliations + expand

PMID: 39727194 PMCID: PMC11737120 DOI: 10.1002/jcla.25131

Activité des enzymes

Méthodes	Matrice
Fluorimétrie	Leucocytes Fibroblastes DBS
LC-MS/MS	DBS
Microfluidique digitale	DBS

Contrôle de l'intégrité cellulaire

Dosage de l'activité d'une autre enzyme lysosomale

Activité souvent basse voire indétectable

Activité des enzymes lysosomales

Méthodes	Matrice
LC-MS/MS	DBS

MPS I Fabry

MPS II Pompe

MPSIIIB Gaucher

MPSIVA Niemann-Pick A/B

MPSIIIA Krabbe

MPSIVB Leucodystrophie

MPS VI Metachromatique

MPS VII Alpha mannosidose

CLN2 Fucosidose..

Blanchard S. et al. Clin. Chem. 2008

Etude Moléculaire

NGS & MHM

Le diagnostic des MLS peut être omis ou retardé

Similtudes des tableaux cliniques

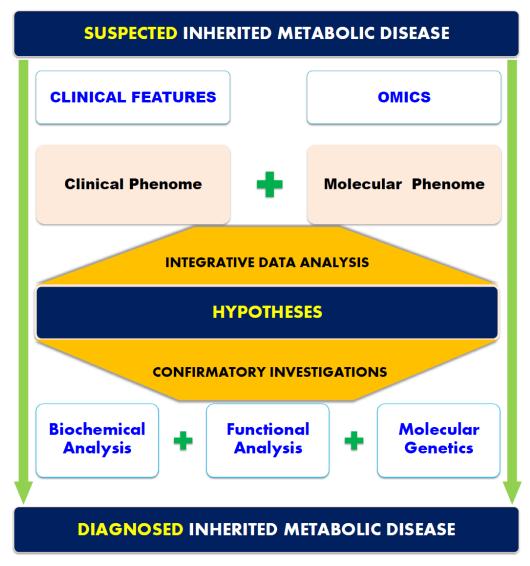
Plusieurs maladies peuvent avoir le même phénotype clinique

Hétérogénéité clinique

Une même altération génétique associée à plusieurs présentations cliniques

Les procédures de diagnostic biologique conventionelles sont basées sur des investigations séquentielles

Développement d'un panel NGS


NGS & MHM

Analyse NGS combinée à une analyse bioinformatique robuste -> Identification de variants pathogènes

La caractérisation fonctionnelle des effets de l'altération génique permet de confirmer le diagnostic

Ce changement de paradigme permet d'améliorer le taux diagnostique

Paradigm Shift

Tebani A. et al. JIMD 2017

Bases biochimiques des maladies héréditaires du métabolisme

Pr. Soumeya BEKRI

Laboratoire de Biochimie Métabolique - CHU de Rouen