

Journée des 20 ans du CRML

CRML Hôpital Necker

vendredi 22/11/2024

Présentation du centre

Centre de référence des maladies lysosomales - CRML APHP Centre -Université Paris Cité - hôpital Necker Enfants Malades -Paris

- Auparavant: centre polyvalent des maladies héréditaires du métabolisme (MaMEA)
- Actuellement 3 centre de référence: MaMEA, CRML et CARAMMEL (maladies mitochondriales)
- Liens étroits avec CETL et collaboration avec les autres CRML
- Consultations de transition : Beaujon, La Pitié et la Croix St Simon

Composition de l'équipe CRML Necker:

- Dr Catherine Caillaud -Biologiste
- Dr Edouard Le Guillou Biologiste
- Dr Samia Pichard Pédiatre clinicienne
- Dr Anaïs Brassier Pédiatre clinicienne
- o Dr Juliette Bouchereau Pédiatre clinicienne
- Dr Claire-Marine Berat- Pédiatre clinicienne

- Mme Aude Pion infirmière de coordination
- Mme Roumaissah Saidi cheffe de projet
- Valérie Barbier Psychologue
- Virginie Leboeuf Assistante sociale

Centre de référence des maladies lysosomales - CRML APHP Centre -Université Paris Cité - hôpital Necker Enfants Malades -Paris

- Diagnostic clinique, biochimique et génétique, prise en charge et suivi de toutes les maladies lysosomales
- Spécificités/ expertises cliniques pédiatriques
- Maladie de Pompe infantile (n= 27)
- Déficit en lipase acide lysosomale (n=7)
- Déficit en ASMD (n= 20)
- MPS (n= 109 dont 39 MPS I et 29 MPSIV)
- Maladie de Gaucher (n= 25)
- Cohorte pédiatrique de env 200 malades dont 98 % < 18 ans, 40 nouveaux patients en 2024, 500 consultations, 300 HDJ, 80 HC, 120 téléconsultations

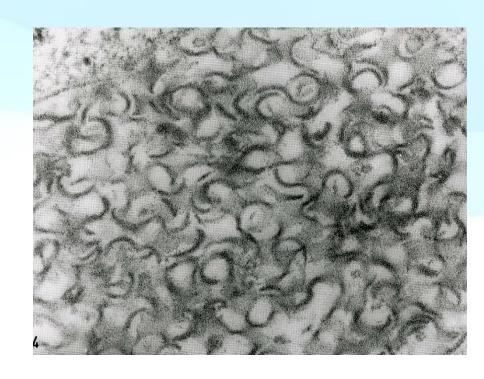
Centre de référence des maladies lysosomales - CRML APHP Centre -Université Paris Cité - hôpital Necker Enfants Malades -Paris

2018: RCP multidisciplinaires locales pour les patients MPS

(anesthésie, neurochir, métaboliciens, pneumologues, ORL)

• 2024: RCP multidisciplinaires locales pour les patients Maladies de Pompe infantile

(anesthésie, cardiologue, équipe douleurs/soins palliatifs, psychologue, pneumologue, neuropédiatre, métabolicien)

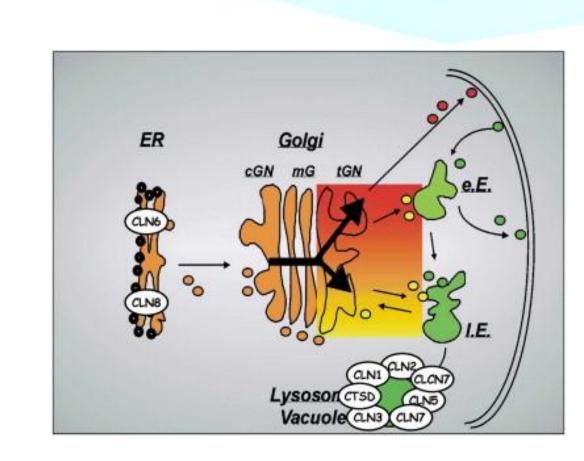

2024: programme ETP Enzy-moi (Dr Pichard, Aude Pion)

Présentation d'un évènement marquant du 21è siècle pour les maladies lysosomales Les Céroïdes lipofuschinoses Dr Catherine Caillaud

Les céroïde-lipofuscinoses neuronales (CLN)

Les premières étapes

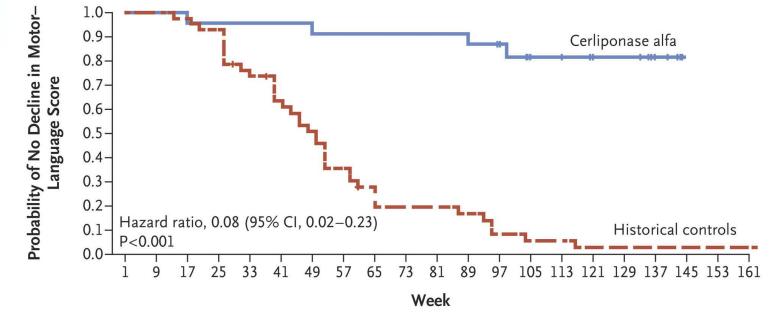
- Diagnostic clinique : infantile, infantile tardive, juvénile, adulte, mais nombreux variants phénotypiques
- Rôle de la microscopie électronique : aide au diagnostic +++
- Caractérisation des gènes impliqués dans les principales formes cliniques
 - CLN3 (juvénile) 1995, PPT1 (infantile) 1995, TPP1 (infantile tardive) 1997
- Rattachement au groupe des maladies lysosomales
- Enquête auprès des neuropédiatres français (B. Chabrol)
 - prédominance de la forme infantile tardive +++
- Mise au point des 1ers tests de diagnostic en France
 - dosage enzymatique (fluorimétrie): tripeptidyl peptidase I (CLN2), palmitoyl protéine thioestérase (CLN1)
 - séquençage des gènes correspondants en Sanger

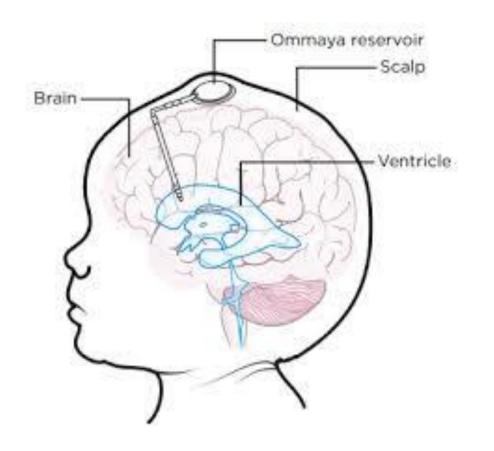

Les céroïde-lipofuscinoses neuronales (CLN) La grande époque

- Caractérisation des différents gènes impliqués dans les CLN +++
 - 13 gènes à ce jour expliquant la grande hétérogénéité clinique

Maladie	Forme clinique	Protéine	Gène
CLN10	Congénitale, infantile tardive, juvénile, adulte	Cathepsine D (CTSD)	CTSD (CLN10)
CLN1	Infantile, infantile tardive, juvénile, adulte	Palmitoyl protéine thioestérase 1 (PPT1)	PPT1 (CLN1)
CLN14	Infantile	K channel tetramerization domain	KCTD7 (CLN14)
CLN2	Infantile tardive, infantile, juvénile, prolongée, SCAR7	Tripeptidyl peptidase 1 (TPP1)	TPP1 (CLN2)
CLN5	Infantile tardive, juvénile, adulte	Protéine lysosomale soluble	CLN5
CLN6	Infantile tardive, adulte/Kufs A	Protéine transmembranaire	CLN6
CLN7	Infantile tardive, prolongée	Protéine transmembranaire	MFSD8 (CLN7)
CLN8	Infantile tardive, Northern epilepsy	Protéine transmembranaire	CLN8
CLN3	Juvénile, prolongée, rétinite pigmentaire	Protéine transmembranaire	CLN3
CLN12	Juvénile, syndrome de Kufor-Rakeb	ATPase lysosomale	ATP13A2 (CLN12)
CLN4	Adulte type A (dominant)	Cysteine string protein (CSPα)	DNAJC5 (CLN4)
CLN11	Adulte, démence frontotemporale	Progranuline	GRN (CLN11)
CLN13	Adulte/Kufs B	Cathepsine F (CTSF)	CTSF (CLN13)

Les céroïde-lipofuscinoses neuronales (CLN) Les retombées


- Facilitation du diagnostic des CLN
 - séquençage Sanger remplacé par NGS : panels maladies lysosomales, mais aussi rétinites pigmentaires, épilepsies, ...
 - nombre de cas diagnostiqués dans notre laboratoire : 152
 - CLN2: 78, CLN1: 20, CLN3: 21, CLN6: 11, CLN7: 16, CLN5: 2, CLN8: 3, CLN10: 1
 - diagnostic prénatal : 1^{er} en 1999 (CLN2)
- Avancées dans la connaissance de la physiopathologie des CLN
 - nombreux modèles animaux : knock-out, naturels
 - étude de la neuropathologie : types cellulaires vulnérables, régions impliquées, ...
 - rôle des différentes protéines, localisation (compartiment endo-lysosomal), interactions (CLN3/CLN5, CLN6/CLN8, ...)
 - implication dans de nombreuses voies : autophagie, fonction synaptique, ...



Les céroïde-lipofuscinoses neuronales (CLN) Les retombées

• Une première thérapie disponible

- ciblant la forme la plus fréquente : CLN2
- essai clinique ayant permis l'obtention d'une AMM pour la Cerliponase alfa (Schulz et al, 2018)
- thérapie innovante ciblant une maladie neurologique
- enzyme recombinante par voie intracérébroventriculaire (ICV)
- traitement mis en place dès le diagnostic posé :
 - nombre d'enfants traités en France : 11 actuellement
 - ralentissement de la maladie uniquement si traitement initié tôt
 - nécessité d'un diagnostic précoce +++

Les céroïde-lipofuscinoses neuronales (CLN)

Perspectives

- Meilleur dépistage de ces maladies, notamment de la forme infantile tardive (CLN2)
 - miniaturisation du dosage (tache de sang, spectrométrie de masse)
 - ouverture vers le dépistage néonatal
- Progrès sur les connaissances physiopathologiques
 - nombreuses équipes académiques au niveau international
 - congrès spécifiques tous les deux ans en alternance USA/Europe
- Développement de thérapies pour les diverses formes de CLN
 - thérapies moléculaires : thérapie substitutive, immunosuppresseurs, ...
 - thérapie génique : intravitréenne, intracérébrale (CLN2, CLN6, CLN3, ...), ...

MERCI à TOUS