20 ANS DU CRML

VENDREDI 22 NOVEMBRE 2024

Bénédicte Héron Hôpital Trousseau, APHP

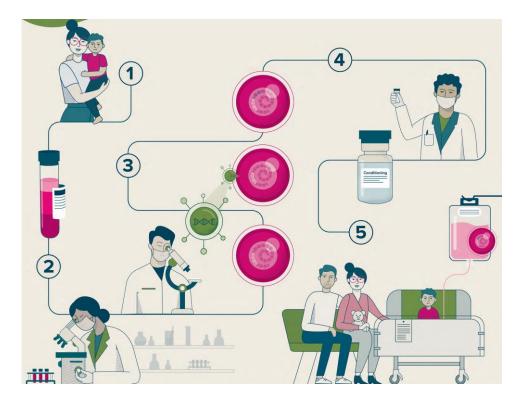
CONFLITS D'INTÉRÊT (ARIAL)

Pas de conflit d'intérêt sur ces thématiques

THÉRAPIE GÉNIQUE

- Thérapie génique ex-vivo : auto-TCSH modifiée ex-vivo par un lentivirus
 - LDM infantile tardive et juvénile précoce pré-symptomatique +++ :
 LIBMELDY® (AMM Europe 2022)
 - Essais en cours : LDM juvénile, MPSIH, MPSIIA, MPSIIA
 - Essais en prévision : Gaucher 3, MPSIIIB
- Thérapie génique in-vivo : Vecteur adénoviral contenant le gène d'intérêt
 *En intracérébral (IC, ICV, ICYS) :
 - Essais en cours : GM2, MPS1, nMPSII (4 mois-5 ans)
 - Essais arrêtés : MPSIIIA, MPSIIIB, LDM, GM1

*En intraveineux (AAV9 intraveineux)

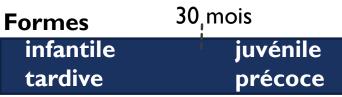

- Fabry, MG1, nnMPSII (18 45 ans)
- MPSIIIA: suivi long terme
- MPSIIIB : AAV9 arrêté

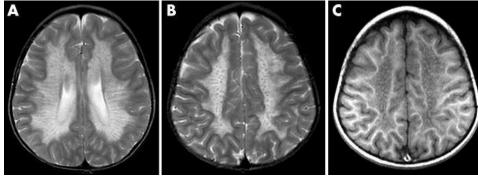
THÉRAPIE GÉNIQUE EX-VIVO DE CSH AUTOLOGUES?

3. Une copie fonctionnelle du gène est insérée dans les cellules

 Les cellules souches du sang sont prélevées chez le patient

2. Les cellules souches sont sélectionnées et purifiées




4. Conditionnement pharmacologique administré au patient, lui permettant de recevoir le traitement

5. Les cellules dont le gène a été corrigé sont rendues au patient

Leucodystrophie Métachromatique (LMC)

- Maladie lysosomale neurodégénérative
- Déficit biallélique du gène ARSA
- Déficit en arylsulfatase A
- Accumulation de sulfatides
- Atteinte centrale et périphérique
- Dégradation motrice et cognitive
- Leucodystrophie démyélinisante

Nandhagopal et Krishnamoorthy 2005

Activité enzymatique résiduelle

LMC - Stratégies thérapeutiques

- Transplantation allogénique de cellules souches hématopoïétiques
 - Allogreffe de moelle ou sang de cordon ombilical
 - Efficacité variable

Martin et al., 2013, Groeschel et al., 2016, van Rappart et al., 2016, Dali et al., 2021

- Enzymothérapie substitutive (ASA humaine recombinante)
 - intraveineuse
 - intrathécale

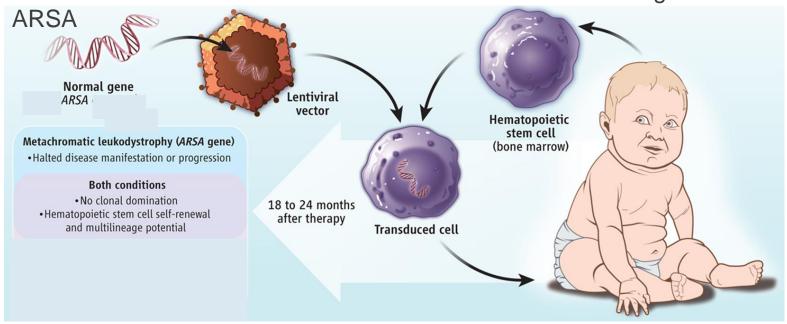
Dali et al., 2020;

ClinicalTrials: NCT03771898

- Thérapie génique directe in vivo dans le SNC médiée par un vecteur viral
 - AAVI0rh (KB)

Sevin et al., 2018;

Lentivirus (Chine)


ClinicalTrials: NCT03725670

Thérapie génique par transplantation autologue
 de cellules souches hématopoïétiques et progénitrices
 transduites ex vivo par un vecteur lentiviral associé au gène humain ARSA

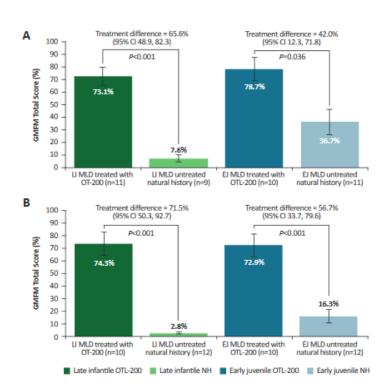
OTL-200

Thérapie génique ex vivo

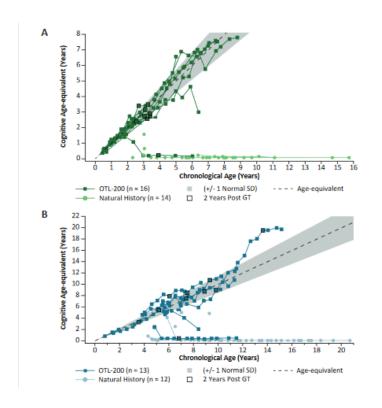
 Avec une population cellulaire autologue enrichie en CD34+ contenant des cellules souches hématopoïétiques et des cellules progénitrices (HSPC) transduites ex vivo à l'aide d'un vecteur lentiviral associé au gène humain

D'après Verma Science 2013

OTL-200

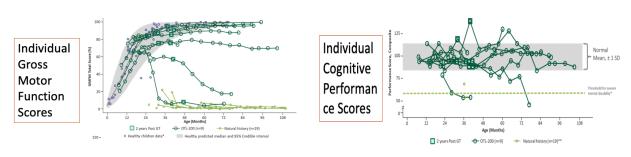

2 Études de phase I/II, monocentriques, ouvertes, un seul bras

	OTL-200-f (préparation fraîche) Clinicaltrials NCT01560182	OTL-200-c (préparation cryoconservée) Clinicaltrials NCT03392987	
Population	MLD infantile tardive présymptomatique ou juvénile précoce pré ou peu symptomatique		
Recrutement	20 patients	10 patients	
Critères d'inclusion	QI > 70 et marche > 10 pas	QI > 85 et GMFCS 0 ou I	
Critère de jugement principal	GMFM > 10% vs histoire naturelle Activité ARSA > +2DS dans sang	GMFM à 24 mois post-thérapie	
Critères de jugement secondaire	Sécurité à court et long terme Maintien du greffon Score cognitif (QI) Démyélinisation et atrophie des SNC et SNP(IRM et EMG) Activité ARSA dans LCR		


- ➤ Cellules issues de moelle osseuse ➤ Quantités comparables cellules et/ou sang périphérique du patient
 - CD34+ et vecteur injectés

OTL-200-F Résultats intermédiaires

Scores EMFG à 2 et 3 ans de traitement



Evolution du quotient de développement cognitif

OTL-200-f Résultats à 7 ans 1/2

N=18 patients pré-symptomatiques (LI) + N=15 pré- ou early-symtomatiques (EJ) Restauration d'une l'activité ARSA en périphérie et dans le LCR Stabilisation à long terme des fonctions motrices et cognitives pour la majorité des patients Pas d'El lié au produit, pas de mutagénèse insertionnelle

MLD01 — MLD04 MLD05 MLD08 Ubtreated late infantle — — MLD02 sb — — MLD05 sb — — MLD

Sessa et al. Lancet 2016

provided by F Fumagalli with permission of Orchard Therapeutics

Effet positif dans les formes précoces à un stade pré-symptomatique Pas d'effet dans les formes précoces symptomatiques Gold standard pour les patients pré-symptomatiques (LI, EJ)

Essai dans les formes LJ (Milan)

- ≥7 and <17 years
- IQ≥85
- GMFC-MLD 0 or I

OTL-200 effets indésirables

Sur 33 enfants traités

- Pas d'effet indésirable grave lié au traitement
- Effets indésirables liés à la procédure de greffe

Median follow-up (N=29): 3.16 years (range 0.64-7.51)

AEs	Related to OTL-200		n=4 (5 AEs of presence of antibodies against ARSA)	
	Most common (potentially related to busulfan conditioning*)		Febrile neutropenia, infections, liver disorders (including 3 VOD), stomatitis, and mucosal inflammation	
SAEs	Relate	d to OTL-200	n=0	
	Most common (associated with disease progression)		Motor dysfunction, dysphagia, muscle spasticity, seizure	
	Metabolic acidosis		n=2 (2 events, 1 of which was life- threatening)	
	Gallbladder polyp requiring cholecystectomy		n=2 (2 events)	
Deaths	Related to OTL-200		n=0	
	All		n=3 2 due to rapid disease progression at 8 and 15 months post-treatment, 1 due to ischemic cerebral infarction	
Hematological [†] Median numb of absolute ne (ANC≤50		utropenia	28 days (range 13–39)	

ANC, absolute neutrophil count; VOD, veno-occlusive disease
*These AEs were not identified based on investigator's assessment but assigned
retrospectively to busulfan, considering its known safety profile in relation to the
nature, frequency, and severity of reported AEs. *1 subject with VOD/thrombotic
microangiopathy reinfused BM back-up. Neutropenia resolved in all subjects

OTL-200-C - LIBMELDY® - AMM EUROPE- AP FRANCE

Thérapie génique en 1 injection intraveineuse de cellules autologues transduites

Mutations bialléliques dans le gène ARSA

Formes infantiles tardives ou juvéniles précoces

- AMM européenne le 17 décembre 2020 thérapie innovante
 - présymptomatiques
 - ou peu symptomatiques : encore capable de marcher indépendamment (GMFCS 0 ou 1) et avant déclin cognitif (QI >85)
- France: Commission de transparence 21/04/2021 et Avis HAS le 30/04/2021 : ASMR 3 (= remboursement)
 - pour formes infantiles tardives et juvéniles précoces pré-symptomatiques
- Essai thérapeutique en cours (Milan) pour formes juvéniles tardives

THERAPIE GÉNIQUE EX VIVO Pour La Maladie De Hurler

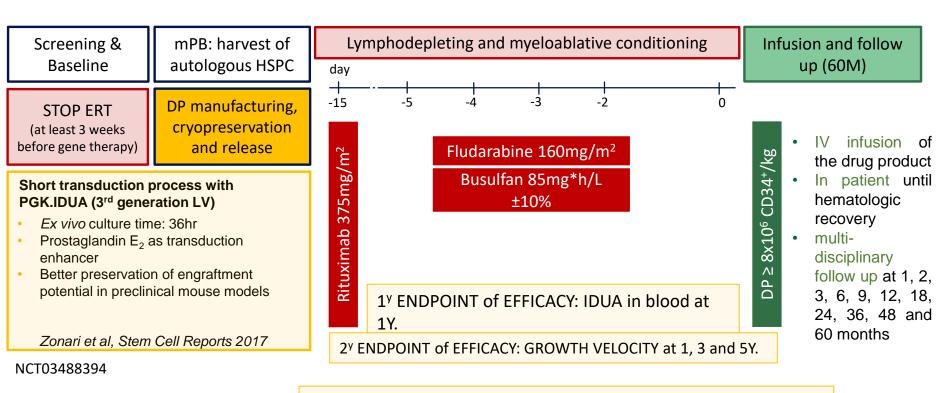
Déficit de l'enzyme lysosomale α-L-iduronidase (IDUA)
Accumulation de GAG dans les cellules uniquitaires
Dysfonctionneemnt multi-organes incluant le SNC
Sous type Hurler (57%): phenotype sévère, DG < 2 ans , survie 10 ans

Phénotype

- Epaississement des traits du visage
- Dysostose multiple multiplex
- Distension abdominale, hernies
- Valvulopathies cardiaques
- Sd du canal carpien, compression médullaire
- Dépots cornéens
- Surdité mixte, SAOS, Hypertrophie VG et amygdales

Atteinte neurologique

- Trouble du neurodéveloppement
- Retard de langage, atteinte de la motricité,
 - Déclin cognitif et moteur



OTL-203 Essai de Phase 1/2

Inclusion/Exclusion: Patients MPS IH, sans accès à une TCSH allogénique /donneur compatible, Avec fonction cognitive préservée (DQ/IQ ≥70) (N=8)

EXPLORATORY ENDPOINTS: motor function, spine MR score at 1, 3 and 5Y.

OTL-203 Essai de Phase I/2 : Analyse intermédiaire

 Résultats préliminaires à 4 ans de suivi : bonne tolerance , evidence d'un correction métabolique extensive et effets bénéfiques mulitisystémiques chez les patients MPS-IH

Tolérance et Evolution biologique

- Bonne tolerance de OTL-203.
- Evènements indésirables liés au conditionnement pré-greffe
- Bonne prise de greffe chez tous les patients avec une activité sanguine IDUA atteignant des taux supra-physiologiques après thérapie génique et des taux presque normaux de GAG urinaires, se maintenant au dernier suivi

Croissance et évolution squelettique

- Croissance statuale normale
- Acquisitions motrices progressives et disparition des raideurs articulaires
- Réduction cliniquement mesurable de la cyphose chez la plupart des patients, corroborée aux évaluation en IRM du rachis et de la dysplasie acétabulaire

Evolution neurologique

- Restauration d'une activité IDUA dans le LCR avec reduction des GAGs dans le LCR
- Tous les patients ont acquis des étapes de développement moteur et langagier avce des scores cognitifs stables et gain progressif de performances cognitives (sauf MPSIH001)
- Stabilisation / amélioration du score d'IRM cérébrale soulignant l'amelioration des anomalies IRM typiques

Evolution non-neurologique / non squelettique

- Ophtalmologique: amélioration / stabilité des depots cornéens
- **Audition** : pas de nécessité d'appareillage auditif ni d'aucune intrevention pour perte auditive
- Pas d'apparition de syndrome du canal carpien
- Cardiaque : pas d'apparition de cardiomyopathie ni progression significative d'insuffisance valvulaire mitrale ou aortique

CONCLUSION

<u>Thérapie génique ex-vivo</u> = thérapie combinée génique et cellulaire auto-TCSH modifiée ex-vivo par un lentivirus

- LDM infantile tardive et juvénile précoce pré-symptomatiques +++ :
 LIBMELDY® (AMM Europe 2022)
- Essais en cours : LDM juvénile, MPSIH, MPSIIA, MPSIIA
- Essais en prévision : Gaucher 3, MPSIIIB

Etat des lieux des essais cliniques pédiatriques pour les maladies lysosomales France en 2021

ESSAIS CLINIQUES en France	nom de l'essai	type d'étude	type de thérapie
leucodystrophie métachromatique	SHP611 /Embolden (phase 2)	Industriel Shire, thérapeutique, multicentrique	enzymothérapie IT
leucodystrophie métachromatique	HGT-MLD 071/IDEAMLD (phase1-2)	IndustrielShire, thérapeutique, multicentrique	enzymothérapie IT
Niemann Pick B (ASMD)	ASCEND-Peds	Sanofi, thérapeutique, multicentrique	enzymothérapie IV (Olipudase a)
Niemann Pick C	CT-ORZY-NPC-002 (6 mois-2 ans)	Orphazyme, thérapeutique, multicentrique	arimoclomol
Niemann Pick C	CT-ORZY-NPC-002 (âge > 2ans)	Orphazyme- Zevra, thérapeutique multicentrique	arimoclomol
Niemann Pick C	VTS301	Malincrodt, Sucampo, thérapeutique multicentrique	cyclodextrine IT
Niemann Pick C	Trappsol	Industriel, Cyclo-therapeutics, multicentrique	cyclodextrine IV
Sanfilippo B	ABT-002	Abeona, thérapeutique, multicentrique	Thérapie génique in vivo
Sanfilippo A	P4-SAF-302	Lysogene, thérapeutique, multicentrique	Thérapie génique in vivo
Hunter type A et B	JR-141-GS31	JCR, thérapeutique, multicentrique	enzymothérapie chimère IV
Hunter type A et B (2-18 ans)	DLN310 (phase 1-2)	Denali therapeutics, multicentrique	enzymothérapie véhiculée IV
GMI infantiles (type I et 2a)	PI-GM-101, NCT04273269	Lysogene, thérapeutique, multicentrique	Thérapie génique in vivo, ICM
GM2 tardives > 18 ans	AMETHIST - NCT04221451	Sanofi-Genzyme, thérapeutique, multicentrique	Venglustat
Gaucher type 3 (12 ans ->= 18 ans)	LEAP2IT (part1,2,3)	Sanofi,thérapeutique, multicentrique	Venglustat + imiglucérase
Gaucher I et 3 pédiatriques (2-17 ans)	ELIKIDS,NCT03485677, phase3	Sanofi,thérapeutique, multicentrique	Eliglustat+/- imiglucerase

Etat des lieux des essais cliniques pédiatriques - Hors France en 2021

SITES INVESTIGATEURS HORS France	nom de l'essai thérapeutique	type d'étude	type de thérapie
leucodystrophie métachromatique LI/EJ présympto	OTL-200, NCT03392987	acad et industriel (ORCHARD)	Thérapie génique ex vivo
Sanfilippo A (3 mois-2 ans)	NCT04201405	acad + Indust (Orchard, thérapeutique, mono)	Thérapie génique ex vivo
Sanfilippo A	ABT-001 et ABT-003 - NCT04088734	Abeona, thérapeutique, multicentrique	Thérapie génique in vivo, IV
Sanfilippo A	EGT-101	Esteve, thérapeutique, monocentrique	Thérapie génique in vivo, ICV
Sanfilippo B	AX 250, NCT03784287	Allievex (Sanofi)	enzymothérapie chimère (IGF2) ICV
Hunter type A (4 mois-5 ans)	RGX I2I (phaseI-2)	Regenxbio,thérapeutique	Thérapie génique in vivo, ICV+ ICM
Hunter type A et B	DLN 310	Denali therapeutics, multicentrique	enzymothérapie chimère IV
Hurler, Hurler Scheie (> 4 mois-adulte)	RGX III (phaseI-2)	Regenxbio,thérapeutique	Thérapie génique in vivo, ICV+ ICM
MPSI et II (> 5 ans)	phase 1-2, NCT03153319	académique, monocentrique	Adalimumab, SC
MPSI tous âges	JR-171, NCT04227600, phase 1-2	JCR, thérapeutique, multicentrique	enzymothérapie chimère IV
Hurler, Hurler-Scheie (28 J- 11 ans)	TigetT10_MPSIH, NCT03488394	académique, thérapeutique, monocentrique	Thérapie génique ex-vivo
MPSI puis autres MPS et Gaucher	IURT, NCT04532047	Académique, monocentrique	enzymothérapie (IVO, in utero)
GM2 infantiles (TS et SD) <15mois	TSHA101 - NCT04798235	Taysha GT, thérapeutique, monocentrique	Thérapie génique in vivo IT
GM2 infantiles/juvéniles (6-20 mois/2-12 ans)	AXO-GM2-001 phase 1 - NCT04669535	SIO-GTX, thérapeutique monocentrique	Thérapie génique in vivo ITh/IT
GM2 tardives > 6 ans	IB1001-202 - NCT03759665	IntraBio, thérapeutique, multicentrique	N-Acetyl-L-Leucine
GMI infantiles (I-2a) I2-36 mois puis 4-36 mois	PBGM01	Passage BIO, thérapeutique, multicentrique	Thérapie génique in vivo ICM
GMI type I (6-12m) et 2 (12m-12a)	19-HG-0101 - NCT03952637- phase 1/2	SIO-GTX, thérapeutique, monocentrique	Thérapie génique IV
GM1/GM2/SapC/Sial/galactosial juv-ado 2-18 ans	AMETHIST - NCT04221451	Sanofi- Genzyme, thérapeutique, multicentrique	Venglustat
Gaucher type I (16-35 ans)	GuardOne,NCT04145037, phase 1-2	AvroBio, thérapeutique bi centrique	Thérapie génique ex-vivo, IV
Gaucher type 2 (<24 mois)	PROVIDE, NCT04411654 - Phase 1-2	Prevail Therapeutics	Thérapie génique in vivo ICM
Gaucher type 3 (12-18 ans)	LEAP2IT, part 3	Sanofi- Genzyme, thérapeutique, multicentrique	Venglustat
CLN3 (3-10 ans)	NCT03770572- phase1	Amicus, thérapeutique, monocentrique	Thérapie génique in vivo
CLN6 (>Ian, HML>3)	vLINCL6, phase I-2,NCT02725580	Amicus, therapeutique, monocentrique	Thérapie génique in vivo, IT
	, p,		8